If it's not what You are looking for type in the equation solver your own equation and let us solve it.
16m^2=225
We move all terms to the left:
16m^2-(225)=0
a = 16; b = 0; c = -225;
Δ = b2-4ac
Δ = 02-4·16·(-225)
Δ = 14400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{14400}=120$$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-120}{2*16}=\frac{-120}{32} =-3+3/4 $$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+120}{2*16}=\frac{120}{32} =3+3/4 $
| x+1/2x+30=4x+110 | | 1/3p+2/5=4/7 | | 3(5g-15)-15g+45=0 | | 20x-12=20x-3 | | |3x+3|=13 | | 7z2=252 | | x+30=4x+110 | | (2x+1)=83 | | 5c-3=3c+5 | | (x+20)=47 | | 18=5m+ | | 14.1k+19.26=-5.4k-19.74 | | −1=−2x−(−x)+3 | | 84=-6(2n-4) | | 6t-5=2-(7-6t) | | -1/3(x-15)= | | 7(x+3)=7x+14 | | x^2(0.13x)+300000=0 | | 7n2=448 | | (g-6)=2 | | x^2(0.13x)+300,000=0 | | 2h-6/4=16 | | 11=3(y-7)-7y | | 3(4x-2)-4=2(3x-4) | | x+0.5x=16.2 | | n+4n-22=77n | | .2+.66x=1+.8x | | X-20=-2y-8 | | 5x=1/18 | | -2c=-7-3c | | -2c=-7−3c | | (3x+14)°=(7x-4)° |